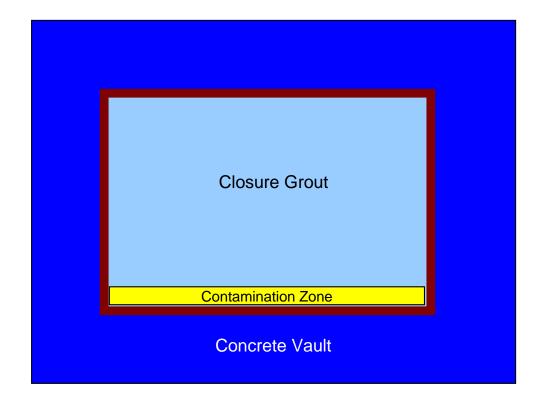
Life Estimation of High Level Waste Tank Steel for F-Tank Farm Closure Performance Assessment

Karthik Subramanian Bruce Wiersma

Materials Science and Technology Directorate Savannah River/Hanford/Idaho Technical Exchange Atlanta, GA 10/10/2007

Outline

- Performance assessment for tank closure
- Tank life estimation technical approach
 - Deterministic
 - Stochastic
 - Corrosion Mechanisms
- Results
- Recommendations


Tank Closure Performance Assessment

- Performance assessment supporting closure of F-Tank Farm
- Carbon steel of high level waste tank initially provide a barrier contaminant escape
- Corrosion mechanisms will degrade liner over time
- Liner will no longer provide a barrier
- Estimate the time to failure of the tank liner due to corrosion processes

Life Estimate: Deterministic Approach

- Active corrosion mechanisms on the steel under closure conditions
- Assumption of only one liner
- Exposures
 - Contamination Zone
 - Grout/Concrete Vault

Contamination Zone

- Function of the undissolved solids in the residual on tank bottom
- R-value: Ratio of inhibitor species (nitrite and hydroxide) to aggressive species (nitrate + chloride)
 - High R-values: Minimal Corrosion
 - Low R-values High corrosion due to insufficient inhibitors
- Results indicate no accelerated corrosion from contamination zone
- Corrosion rate of 0.04 mils/year (1μm/year) assumed

R-Value
5.47
4.36
3.94
9.67
5.31
12.39
3.44
3.87
3.18
4.51
0.24
3.18
3.19
3.19
3.19
3.19
4.53
12.40
4.45
3.19
3.19
3.19

Corrosion in Concrete/Grout

- Corrosion of steel exposed to concrete/grout occurs by a complex mechanism that occurs through metal dissolution at the concrete/metal interface.
- Concrete generally prevents corrosion of the steel
 - Forms passive oxide on the steel surface
 - Maintains a high pH environment
 - Provides a matrix resistant to diffusion of aggressive species
- Passivity can be lost through carbonation or through <u>chloride induced film</u>
 breakdown
 - Pore water characteristics change with the introduction of chlorides or carbon dioxide, the passive film on the steel may break down

Carbonation

 Pore water pH reduces dramatically due to the conversion of the calcium hydroxide to calcium carbonate through reaction with carbon dioxide

$$Ca(OH)_2 + CO_3^{2-} \Rightarrow CaCO_3 + 2OH^{-}$$

 Complex function of the permeability of the concrete, relative humidity, and the carbon dioxide availability Simple Model

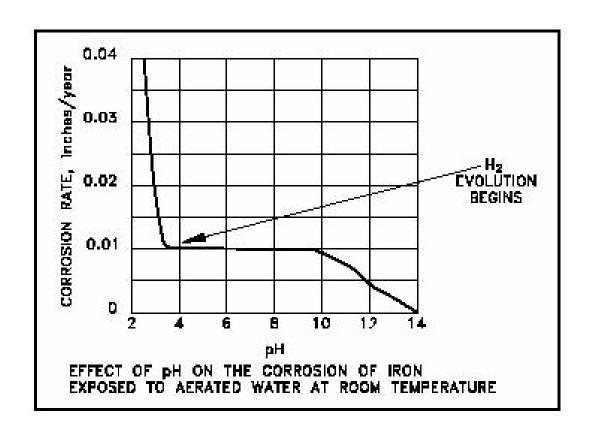
$$X = \left(D_i \frac{C_{gw}}{C_g} t\right)^{\frac{1}{2}}$$

- Assumption: subsurface concrete vaults water saturated
- CO₂ transport is in the aqeuous phase.

X = carbonation depth (cm)

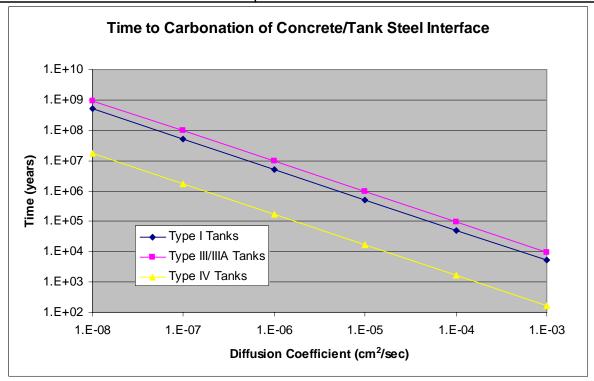
D_i = intrinsic diffusion coefficient of Ca⁺⁺ in concrete (cm²/s)

C_{gw}= total inorganic carbon in ground water (mole/cm³)


C_g = Ca(OH)₂ bulk concentration in concrete solid (mole/cm³)

t = time(s)

Effect of Carbonation


 Reduction of the pH into a regime where the steel is susceptible to corrosion

Carbonation Times

<u>Parameter</u>	<u>Value</u>
Type I Tank Minimum Concrete Vault Dimension	22-in.
Type III Tank Minimum Concrete Vault Dimension	30-in.
Type IV Tank Minimum Concrete Vault Dimension	4-in.
$D_i(Ca^{++})$	$1\text{E-8 cm}^2/\text{sec} \le D_i \le 1\text{E-3 cm}^2/\text{sec}$
C _{gw} (as soil moisture content)	1.93E-7 mol/cm ³
C_{g}	0.02 mol/cm ³

Chloride Induced Corrosion: Initiation

- Due to the breakdown of the passive film, thereby indicating that chloride diffusion is the rate controlling step for corrosion initiation
- Followed by oxygen diffusion for corrosion reactions to occur

Simple Empirical Model:

$$t_{initiation} = \frac{129 \cdot t_c^{1.22}}{WCR \cdot \left[Cl^{-}\right]^{0.42}}$$

t_{initiation} = time required for initiation
(years)
t_c = thickness of the concrete
cover (in.)
WCR = water-to-cement ratio
[Cl-] = chloride concentration in the

groundwater (ppm)

Chloride Induced Corrosion: Reaction

Oxygen diffusion to breakdown of passivity

$$Fe + \frac{3}{2}H_2O + \frac{3}{4}O_2 = Fe(OH)_2$$

Corrosion rate

$$R_{corrosion} = \frac{4}{3} N_{O_2} \frac{M_{Fe}}{\rho_{Fe}}$$

 M_{Fe} = molecular weight of iron (56 g/mol)

 ρ_{Fe} = density of iron (7.86 g/cm3)

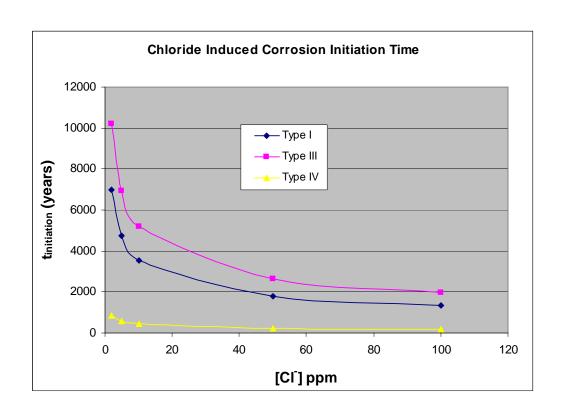
$$N_{O_2} = D_i \frac{C_{gw}}{\Delta X}$$

 N_{O2} = Flux of oxygen through concrete (mol/s/cm²)

 D_i = Oxygen diffusion coefficient in concrete (cm²/sec)

 C_{gw} = Concentration of oxygen in groundwater (mol/cm³)

 ΔX = Depth of concrete (cm)

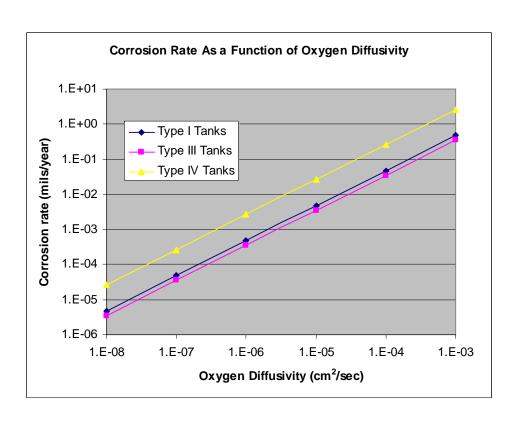


Chloride Induced Corrosion: Input Parameters

<u>Parameter</u>	<u>Value</u>
Type I Tank Minimum Concrete Vault Dimension	22-in.
Type III Tank Minimum Concrete Vault Dimension	30-in.
Type IV Tank Minimum Concrete Vault Dimension	4-in.
WCR	0.6
[Cl ⁻]	2-100 ppm
D _i (Oxygen)	$1\text{E-8 cm}^2/\text{sec} \le D_i \le 1\text{E-3 cm}^2/\text{sec}$
C _{gw} (Oxygen)	7.25 mg/L

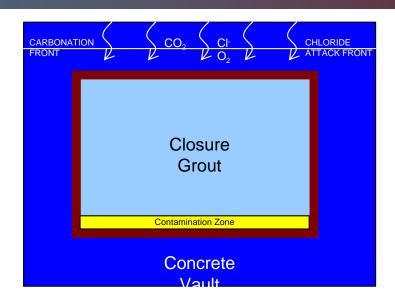
Chloride Induced Corrosion Initiation Time

	[Cl ⁻] ppm	t _{initiation} (yrs)
Type I	2	6978
	5	4749
	10	3550
	50	1806
	100	1350
Type III	2	10188
	5	6934
	10	5182
	50	2636
	100	1970
Type IV	2	872
	5	593
	10	444
	50	226
	100	169


Corrosion Rates

Critical oxygen diffusivity at which the corrosion rate will be greater than 0.04 mils/year corrosion rate:

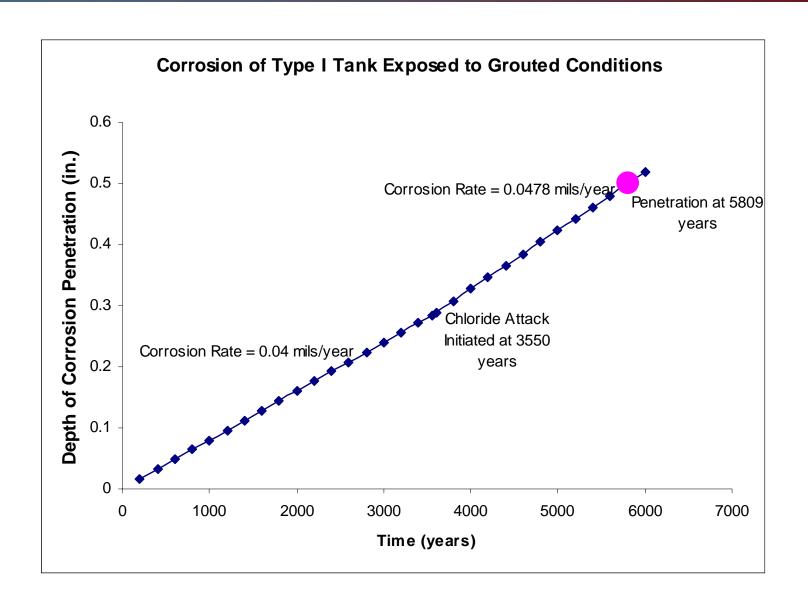
- Type I Tank: 8.29x10⁻⁵ cm²/sec


- Type III Tank: $1x10^{-4}$ cm²/sec

- Type IV Tank: 1.51×10^{-5} cm²/sec

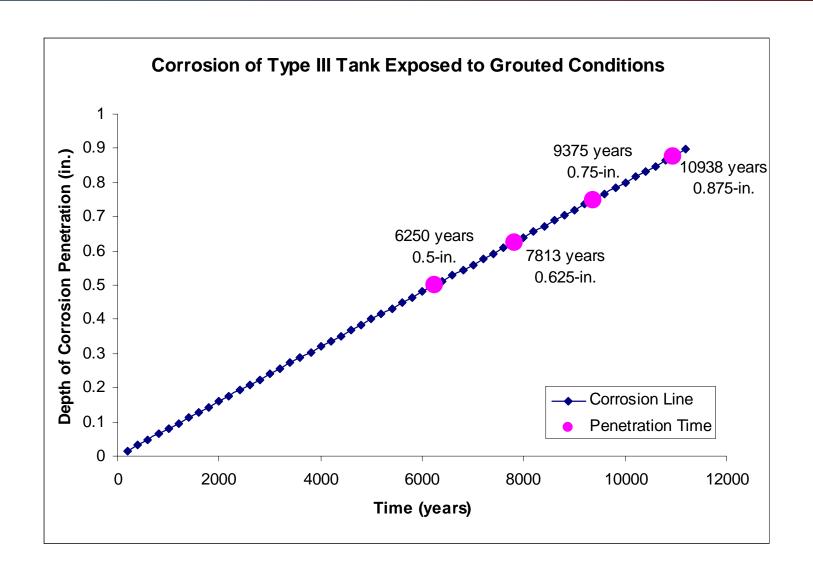
Results of Deterministic Approach

- Initially, general corrosion proceeding at 0.04 mils/year for the tank steel exposed to the concrete/grout.
- Chloride attack then initiated leading to loss of passivity
- Oxygen diffusion for corrosion reactions

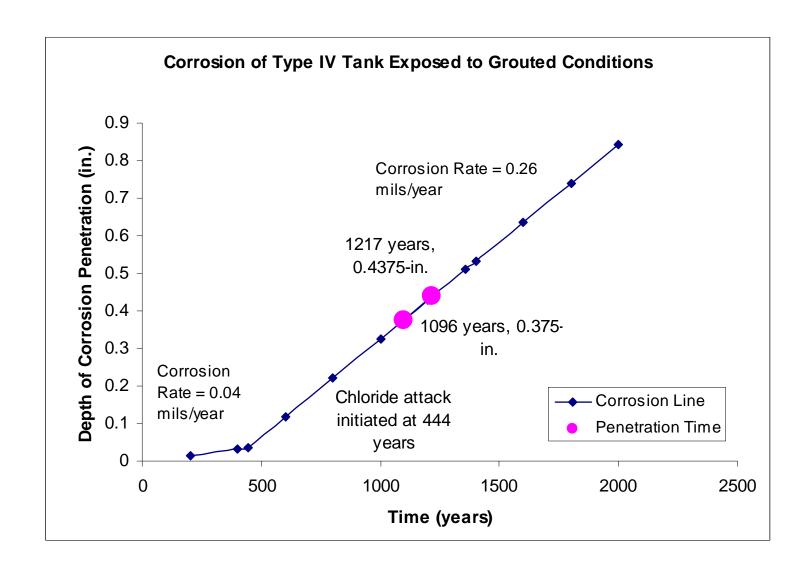


Inputs/Assumptions

- Corrosion is initiated on the both internal and external surfaces of the tank once chloride has penetrated through the thinnest section of concrete.
- Chloride concentration assumed to be 10 ppm
- Oxygen diffusivity is assumed to be 1x10⁻⁴ cm²/sec
- Assume that oxygen is available over the entire surface once the oxygen penetrates the thinnest section of concrete, corresponding to the following corrosion rates:
 - Type I Tanks0.0478 mils/year
 - Type III Tanks0.04 mils/year
 - Type IV Tanks0.26 mils/year



Life Estimation Grouted Conditions: Type I tanks



Life-Estimation Grouted Conditions: Type IIITanks

Life Estimation Grouted Conditions: Type IV Tanks

Life Estimate: Stochastic Approach

- Proposed to account for potential uncertainty in the time-frames proposed for regulatory compliance
- Initially Considered
 - First order reliability methods (FORM)
 - Statistical information is sparse
 - Marginal probability distributions
 - Direct uncertainty analysis
 - Separation of the probability calculations from the evaluation of the performance measure
 - Discretization of the probability intervals
- Ultimately, USED Monte Carlo Simulation
 - Inherently represent the uncertainties in the deterministic approach
 - Large number of simulations
 - Exploits the in-depth knowledge of SRS subsurface environments and HLW tanks as input distributions for the simulations

Stochastic Technical Approach

- Life of the tank liners was assumed to be a function of the time to corrosion initiation plus the time for corrosion to propagate through the liner
- Grouted Conditions

- General corrosion in grouted conditions
- Chloride induced depassivation, followed by general corrosion
- Carbonation induced loss of protective capacity of the concretecombination

$$t_{failure} = t_{initiation} + \frac{Thickness(mils)}{CorrosionRate(mils/year)}$$

 $t_{failure}$ = time to complete consumption of the tank wall by general corrosion

 $t_{initiation}$ = time to chloride induced depassivation or carbonation front

Thickness = initial thickness of liner (mils)

Corrosion rate:= Dependent upon condition, i.e. chloride or carbonation

Monte Carlo Models

■ Case 1: IF $t_{\text{initiation}}$ [C1⁻] $\geq t_{\text{initiation}}$ [Carbonation]

$$t_{failure} = t_{initiation[carbonation]} + \frac{Thickness(mils)}{CorrosionRate(mils/year)}$$

$$T_0$$
 = Initial Thickness (mils)
Thickness = $T_0 - 0.04*t_{init[carbonation]}$ [mils]
Corrosion Rate ($R_{carbonation}$) = 10 mils/year

■ Case 2: IF $t_{initiation}$ [C1-] $\leq t_{initiation}$ [Carbonation]

$$t_{failure} = t_{initiation[chloride]} + \frac{Thickness(mils)}{CorrosionRate(mils/year)}$$

$$T_0$$
 = Initial Thickness (mils)
Thickness = $T_0 - 0.04$ * $t_{init[chloride]}$ [mils]
Corrosion Rate ($R_{carbonation}$) = calculated

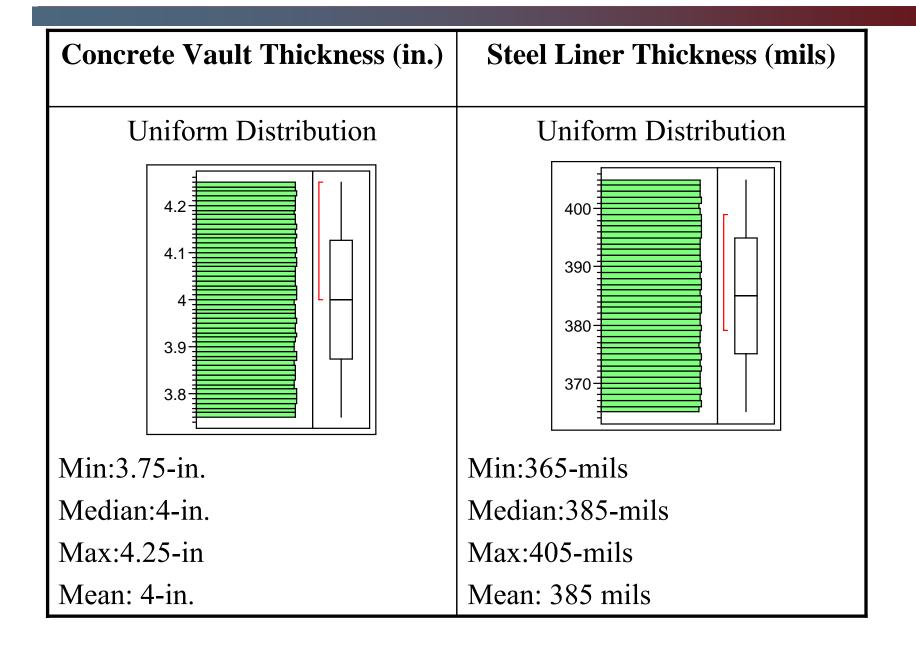
$$R_{corrosion} = \frac{4}{3} N_{O_2} \frac{M_{Fe}}{\rho_{Fe}}$$

 M_{Fe} = molecular weight of iron (56 g/mol) ρ_{Fe} = density of iron (7.86 g/cm³) N_{O2} = Flux of oxygen through concrete (mol/s/cm²)

Monte Carlo Models

■ Case 3: IF t_{failure} [Cl⁻] $\geq t_{\text{initiation}}$ [Carbonation]

$$t_{failure} = t_{initiation[carbonation]} + \frac{Thickness(mils)}{CorrosionRate(mils/year)}$$


$$T_o - \left[\left(t_{initiation[carbonation]} - t_{initiation[Cl]} \right) \cdot R_{Cl} + \left(t_{initiation[Cl]} \cdot 0.04 \right) \right]$$

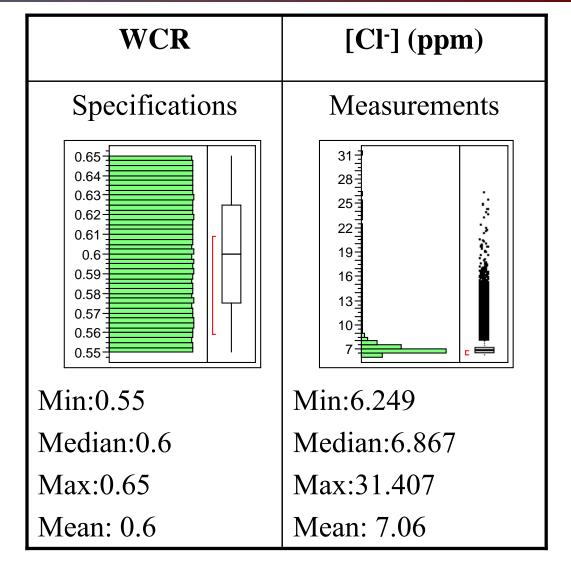
$$t_{\textit{failure}} = t_{\textit{initiation}[\textit{carbonation}]} + \frac{T_o - \left[\left(t_{\textit{initiation}[\textit{carbonation}]} - t_{\textit{initiation}[\textit{Cl}]}\right) \cdot R_{\textit{Cl}} + \left(t_{\textit{initiation}[\textit{Cl}]} \cdot 0.04\right)\right](\textit{mils})}{10(\textit{mils} / \textit{year})}$$

 Chloride induced depassivation → corrosion between initiation time to carbonation and initiation time of chloride induced corrosion → corrosion due to carbonation.

Type IV Tank Simulation: Inputs

Initiation of Chloride Attack Input Distributions: Type IV

Chloride Initiation

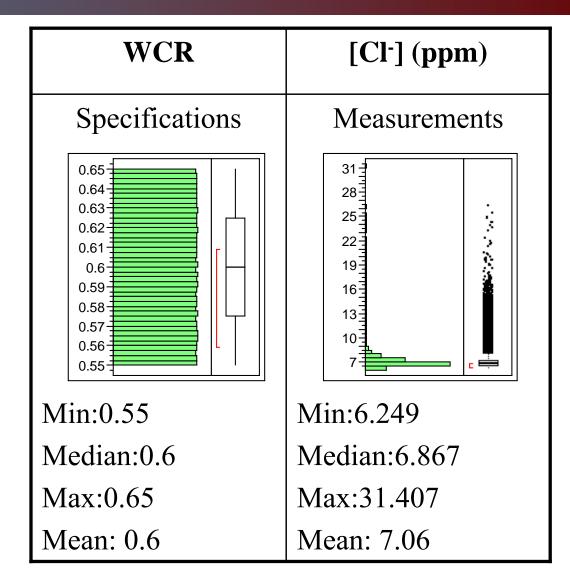

$$t_{initiation} = \frac{129 \cdot t_c^{1.22}}{WCR \cdot \left[Cl^{-}\right]^{0.42}}$$

t_{initiation} = time required for initiation
(years)

t_c = thickness of the concrete
cover (in.)

WCR = water-to-cement ratio

[Cl-] = chloride concentration in the
groundwater (ppm)


Chloride Corrosion Rate Distributions

Chloride Initiation

$$t_{initiation} = \frac{129 \cdot t_c^{1.22}}{WCR \cdot \left[Cl^{-}\right]^{0.42}}$$

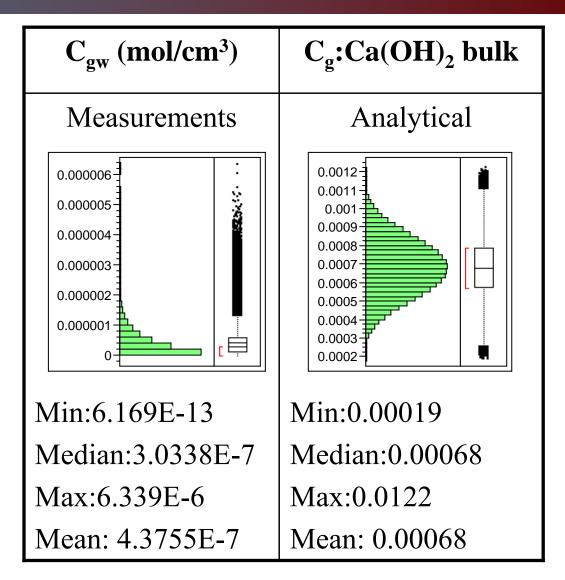
 $t_{initiation}$ = time required for initiation (years) = thickness of the concrete cover (in.) WCR = water-to-cement ratio

[Cl-] = chloride concentration in the groundwater (ppm)

Carbonation Input Distributions: Type IV

Carbonation: Simple Model

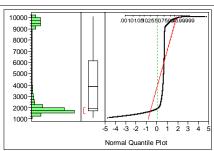
$$X = \left(D_i \frac{C_{gw}}{C_g} t\right)^{\frac{1}{2}}$$


X = carbonation depth (cm)

D_i = intrinsic diffusion coefficient of Ca⁺⁺ in concrete (cm²/s)

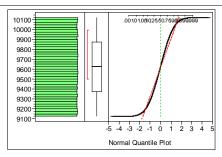
C_{gw}= total inorganic carbon in ground water (mole/cm³)

C_g = Ca(OH)₂ bulk concentration in concrete solid (mole/cm³)


t = time(s)

Type IV Results: $D_i(Ca^{++}) = 1x10^{-8}cm^2/sec$, Varied $D_i(O_2)$

Time to Failure: $D_i(O_2)=0.0001$

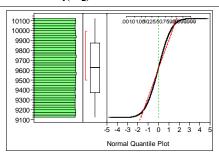

Quantiles

100.0%	maximum	10125
99.5%		10103
97.5%		10014
90.0%		9689
75.0%	quartile	6133
50.0%	median	1920
25.0%	quartile	1678
10.0%		1545
2.5%		1431
0.5%		1346
0.0%	minimum	1110

Moments

Mean	3889.3953
Std Dev	3301.6607
Std Err Mean	3.3016607
upper 95% Mean	3895.8665
lower 95% Mean	3882.9242
N	1000000

Time to Failure: $D_i(O_2)=0.000001$


Quantiles

100.0%	maximum	10125
99.5%		10120
97.5%		10100
90.0%		10025
75.0%	quartile	9875
50.0%	median	9626
25.0%	quartile	9376
10.0%		9225
2.5%		9150
0.5%		9130
0.0%	minimum	9125

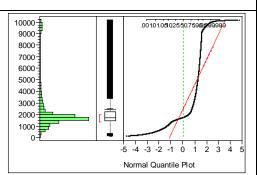
Moments

Mean	9625.5814
Std Dev	288.30203
Std Err Mean	0.288302
upper 95% Mean	9626.1464
lower 95% Mean	9625.0163
N	1000000

Time to Failure: D_i(O₂)=0.00000001

Quantiles

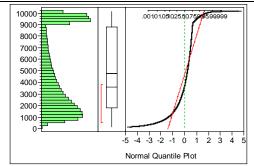
100.0%	maximum	10125
99.5%		10120
97.5%		10100
90.0%		10025
75.0%	quartile	9875
50.0%	median	9626
25.0%	quartile	9376
10.0%		9225
2.5%		9150
0.5%		9130
0.0%	minimum	9125


Moments

N 4 = = =	9625.5814
Mean	3023.3014
Std Dev	288.30203
Std Err Mean	0.288302
upper 95% Mean	9626.1464
lower 95% Mean	9625.0163
N	1000000

Type IV Results: $D_i(Ca^{++}) = 1x10^{-6}cm^2/sec$, Varied $D_i(O_2)$

Time to Failure: $D_i(O_2)=0.0001$

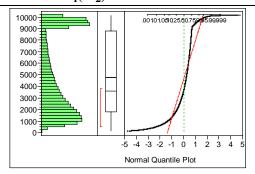

Quantiles

100.0%	maximum	10125
99.5%		10028
97.5%		9656
90.0%		5240
75.0%	quartile	2276
50.0%	median	1754
25.0%	quartile	1509
10.0%		1061
2.5%		654
0.5%		444
0.0%	minimum	152

Moments

Mean	2507.0508
Std Dev	2163.4304
Std Err Mean	2.1634304
upper 95% Mean	2511.291
lower 95% Mean	2502.8105
N	1000000

Time to Failure: $D_i(O_2)=0.000001$


Quantiles

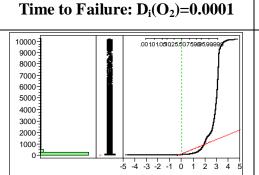
100.0%	maximum	10125
99.5%		10102
97.5%		10012
90.0%		9693
75.0%	quartile	8819
50.0%	median	3638
25.0%	quartile	1805
10.0%		1071
2.5%		655
0.5%		444
0.0%	minimum	152

Moments

Mean	4758.5687
Std Dev	3324.095
Std Err Mean	3.324095
upper 95% Mean	4765.0838
lower 95% Mean	4752.0536
N	1000000

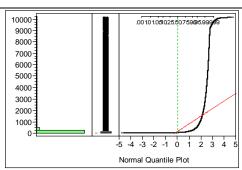
Time to Failure: D_i(O₂)=0.00000001

Quantiles

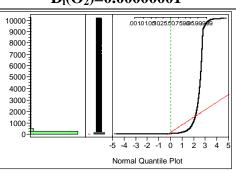

100.0%	maximum	10125
99.5%		10102
97.5%		10012
90.0%		9693
75.0%	quartile	8819
50.0%	median	3638
25.0%	quartile	1805
10.0%		1071
2.5%		655
0.5%		444
0.0%	minimum	152

Moments

Mean	4758.5687
Std Dev	3324.095
Std Err Mean	3.324095
upper 95% Mean	4765.0838
lower 95% Mean	4752.0536
N	1000000



Type IV Results: $D_i(Ca^{++}) = 1x10^{-4}cm^2/sec$, Varied $D_i(O_2)$



Normal Quantile Plot

Time to Failure: $D_i(O_2)=0.000001$

Time to Failure: D_i(O₂)=0.00000001

Quantiles

100.0%	maximum	10124
99.5%		2119
97.5%		1041
90.0%		280
75.0%	quartile	126
50.0%	median	75
25.0%	quartile	56
10.0%		49
2.5%		45
0.5%		42
0.0%	minimum	38

Quantiles

100.0%	maximum	10125
99.5%		5107
97.5%		1050
90.0%		280
75.0%	quartile	126
50.0%	median	75
25.0%	quartile	56
10.0%		49
2.5%		45
0.5%		42
0.0%	minimum	38

Quantiles

100.0%	maximum	10125
99.5%		5107
97.5%		1050
90.0%		280
75.0%	quartile	126
50.0%	median	75
25.0%	quartile	56
10.0%		49
2.5%		45
0.5%		42
0.0%	minimum	38

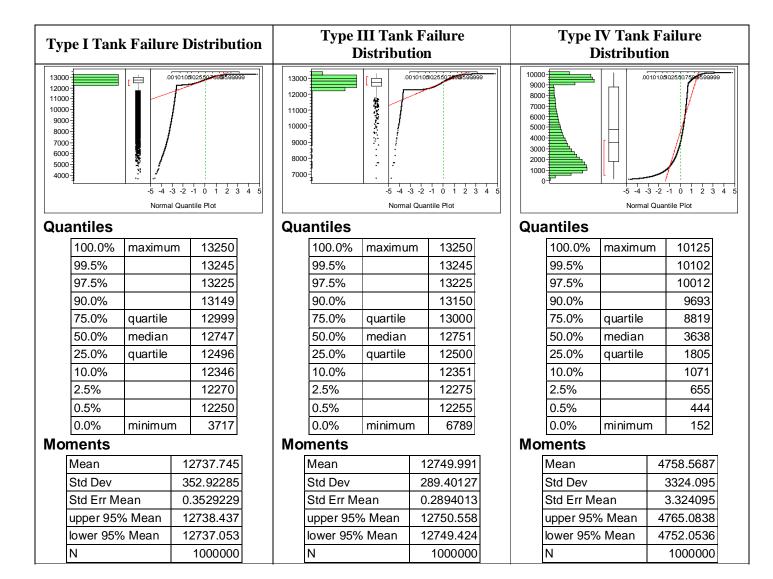
Moments

Mean	168.94462
Std Dev	420.1519
Std Err Mean	0.4201519
upper 95% Mean	169.76811
lower 95% Mean	168.12114
N	1000000

Moments

Mean	200.11287
Std Dev	677.54184
Std Err Mean	0.6775418
upper 95% Mean	201.44083
lower 95% Mean	198.78491
N	1000000

Moments


Mean	200.11287
Std Dev	677.54184
Std Err Mean	0.6775418
upper 95% Mean	201.44083
lower 95% Mean	198.78491
N	1000000

Recommendations

$$D_i(Ca^{2++}) = 1x10^{-6} \text{ cm} 2/\text{sec}$$

•
$$D_i(O_2) = 1x10^{-6} \text{ cm}_2/\text{sec}$$

Summary

- Estimate lifetime of tank steel for performance assessment for tank closure
- Deterministic and Stochastic approaches
- Accounted for corrosion of tank steel liner in contact with grout/concrete
- Data will be used as input into groundwater modeling efforts:
 PORFLOW and GOLDSIM

